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Experiments were performed to observe the motion of a solid sphere approaching
a solid wall through a thin layer of a viscous liquid. We focus mainly on cases
where the ratio of the film thickness, δ, to the sphere diameter, D, is in the range
0.03 <δ/D < 0.09 and the Stokes number, St , a measure of the sphere inertia to viscous
forces, is below a critical level Stc so that the spheres do not rebound and escape
from the liquid layer. This provides us with the scope to verify the force acting on the
sphere, derived from lubrication theory. Using high-speed video imaging we show, for
the first time, that the equations of motion based on the lubrication approximation
correctly describe the deceleration of the sphere when St < Stc. Furthermore, we show
that the penetration depth at which the sphere motion is first arrested by the viscous
force, which decreases with increasing Stokes number, matches well with theoretical
predictions. An example for a shear-thinning liquid is also presented, showing that
this simple set-up may be used to deduce the short-time dynamical behaviour of
non-Newtonian liquids.

1. Introduction
When a sphere is in close approach to a wall perpendicular to the motion (see

figure 1a), the Stokes force acting on the sphere, Fµ = 6πµav, where µ is the fluid
dynamic viscosity, a is the sphere radius and v is the sphere velocity (see e.g. Brenner
1961) is corrected by a factor of a/x where x is the separation distance between the
nose (i.e. south pole) of the sphere and the wall, so that the lubrication force exerted
on the sphere is given by

FL = 6πµa2v/x. (1.1)

This correction factor has been experimentally examined by Ambari, Gauthier-
Manuel & Guyon (1984) by translating a solid wall towards a sphere levitated
in a cylindrical tube filled with silicone oil. In their experiments, the translation
velocities were of the order 10−5 m s−1 and the sphere was fully immersed in the
fluid. This lubrication force is the force responsible for the deformation of the sphere
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once the separation distance, x, becomes comparable to an elasticity length scale,
xr = (3πθµa3/2v0/

√
2)2/5 (Davis, Rager & Good 2002), where v0 is the sphere velocity

at the initial separation x0, θ = (1−ν2
1 )/πE1 +(1−ν2

2 )/πE2, ν1 and ν2 are the Poisson’s
ratios of the sphere and plane and E1 and E2 are the Young’s modulus of the
sphere and plane. Note that this scaling only holds if the sphere retains half of its
initial velocity, that is v = v0/2 at x = xr . If the deformation of the solid is significant,
rebound may occur as the elastic strain energy is converted back to kinetic energy.
This process is at the core of inter-particle and particle-wall collisions which are a
fundamental physical phenomenon and ubiquitous in many industrial processes. The
nature of the impacts can vary widely, from wet and dry particle collisions during a
granulation process (Salman, Hounslow & Seville 2006) to immersed particle collisions
during sedimentation and filtration.

In attempt to elucidate some of the features of a wet collision, several ideal
problems have previously been considered; a spherical particle impacting another
spherical particle or a plane immersed in a liquid (Davis, Serayssol & Hinch 1986;
Lian, Adams & Thornton 1996; Gondret, Lance & Petit 2002), a dry spherical particle
impacting a wet surface (Barnocky & Davis 1988; Davis et al. 2002) and wet spherical
particles colliding in air (Donahue et al. 2009). Though not entirely representative
of a typical impact or collision in applications such as granulation, these problems
reveal some wonderful insight into the physics occurring in such applications.

The first authoritative work by Davis et al. (1986) revealed two main dimensionless
parameters, namely the Stokes number and an elasticity parameter:

St =
ρsDvo

9µ
, ε = 4θµvoa

3/2/x
5/2
0 , (1.2)

where ρs and D are the density and diameter of the solid sphere. Their work
showed that no rebound occurs when the Stokes number is below a critical value,
i.e. when St <Stc and was verified by Barnocky & Davis (1988). The critical Stokes
number has been expressed as a function of the elasticity parameter given as
Stc = 0.52 ln(1/ε) − 1.67 by Lian et al. (1996) or, similarly, Stc = 0.4 ln(1/ε) − 0.2
by Davis et al. (2002). Other configurations have also confirmed the presence of a
critical value of the Stokes number during elastohydrodynamic collisions (Gondret
et al. 1999; Gondret et al. 2002). Some recent works (e.g. Kantak, Hrenya & Davis
2009) have incorporated the original elastohydrodynamic theory to investigate
multi-particle systems. Davis et al. (2002) performed measurements of the coefficient
of restitution (i.e. the ratio of the rebound velocity to the impact velocity) using a
stroboscope with a temporal resolution of 0.01 s. However, none of the above works
observe the actual short-time dynamics of the sphere as it first penetrates the liquid.
This observation has now become feasible due to recent advances in high-speed
video imaging (Thoroddsen, Etoh & Takehara 2008).

As such, we revisit the elastohydrodynamic problem with the purpose of providing
a direct verification of the lubrication force (1.1) during the short-time (t � 20 ms)
dynamics of the sphere upon close approach to a wall where the wall is covered
with a thin film of viscous liquid (δ/D � 1). The observations of close approach
from the high-speed imaging are compared directly to the equations of motion which
account only for the viscous lubrication and sphere inertia. Both the separation
distance and the time at which the sphere is first arrested agree well with the
theory assuming zero solids deformation for a Newtonian liquid. It is thus shown
that the elasticity length scale and the Stokes number are the correct fitting
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Figure 1. (a) Sketch showing the physical parameters in the close approach of a sphere
towards a wall. (b) Schematic of the experimental set-up used. (c) Example of raw data from
a video sequence taken for the impact of a D =50 mm sphere onto a δ = 2.25 mm film of
pure syrup at ui = 1.59 m s−1. The first panel shown is taken just after entry into the film with
x =2.19 mm and subsequent frames are taken at time t = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8,
2.2, 2.8, 3.6 ms. In the final panel, x = 230 µm.

parameters for the data. We also present data for a specific case where the fluid
is strongly non-Newtonian showing strong deviations from the classical description of
motion.

2. Materials and Methods
In the experiments, a stainless steel sphere, D = 25, 38 or 50 mm, is released from

an electromagnetic holder suspended directly above the liquid layer. The liquid film is
contained within a marked perimeter on the target surface. Two target surfaces were
considered in these experiments, namely glass and steel. Both targets were solid blocks
with dimensions 0.11 m × 0.11 m × 0.065 m and were placed directly on a ground-level
concrete floor to ensure the target remained rigid throughout the impact. Liquid films
with thickness δ = 1.15, 2.3 and 3.45 mm were examined. For the steel onto glass
impact θ ∼ 6.15 × 10−12 and ε ∼ 10−5 − 10−3 and the corresponding values for steel
onto steel are θ ∼ 2.87 × 10−12 and ε ∼ 10−6 − 10−4 in these experiments. A schematic
of the experimental set-up used is shown in figure 1(b).

The apex of the sphere is tracked using a Photron Fastcam SA1 high-speed camera
at a frame rate of 50 Kfps which yields a resolution of 64 × 736 pixels and a
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Figure 2. Rheological data for 100 000 cSt silicone oil. The data points are taken from
the manufacturer’s data and the theoretical fit with the Carreau model assumes a zero
shear µ0 = 97.7 Pa s (as stated by the manufacturer). The resulting parameters are µ∞ = 0,
λ=4.88 × 10−3 and n= 0.455.

recording time long enough to allow for manual triggering of the video sequence.
Backlighting is provided by a single fibre-optic guide attached to a 350 W Sumita
Metal Halide light source. Using a Leica Z16 long-distance microscope at 4 − 6.3×
optical magnification, the effective pixel resolution is in the range 3.3−5.06 µm pixel−1

which, given the high contrast of the images, yields high accuracy in the measurement
of the separation distance between the tip of the sphere and the wall surface. An
example of the raw data format is given in figure 1(c). Here, the top of the black
strip marks the apex of the sphere from which we deduce the effective separation
distance x(t), so that the bottom of the strips indicates a zero separation distance,
x = 0 (i.e. physical contact with the plate). For this example, the minimum distance
is xmin =230 µm.

The apex is tracked from the instant it enters the top of the frame with effective
time steps of �t = 20 µs. For the initial motion and deceleration of the sphere, only
the first ∼1000 frames (t = 0.02 s) from the video clips are analysed using an image
correlation routine in Matlab.

For comparison to theory, we use pure Tate & Lyle’s Golden Syrup for it’s
high viscosity and strictly Newtonian behaviour, however, dilute mixtures (in water)
to examine the effect of viscosity were also used. The entire experimental facility
was placed in a humidity chamber to eliminate viscosity changes through moisture
absorption. However, due to minor temperature fluctuations between 21◦C and
23◦C the viscosity of the syrup was measured every 0.5◦C with an Anton Paar
MCR301 Rheometer with concentric cylinder geometry, with resulting viscosities
25.5, 27.5, 29.7, 31 and 34.6 Pa s. For the non-Newtonian case examined here, we used
(dimethylpolysiloxane) Silicone oil (Shin-Etsu Chemical Co. Ltd, Japan) with low-
shear kinematic viscosity ν = 100 000 cSt (µ = 97.7 Pa s). These fluids are known to
be highly shear-thinning and compressible. The rheological data for this fluid can be
seen in figure 2 where the data points are taken from the manufacturer’s data and the
theoretical fit is provided by the Carreau model (µ−µ∞)/(µ0 −µ∞) = [1+(λγ̇ )2](n−1)/2

with µ0 = 97.7 Pa s, µ∞ = 0, λ= 4.88 × 10−3 s and n= 0.455.
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3. Results and discussion
In figures 3(a), 3(c) and 3(e) we show examples of data for separation distance

versus time, velocity versus separation distance and lubrication force versus separation
distance, respectively. The raw data (figure 3a) was obtained directly from the high-
speed video sequences in a series of experiments for a D = 50 mm sphere impacting
onto a δ = 2.25 mm film of pure golden syrup (µ = 29.6 Pa s) for several impact
velocities ui = 0.53, 0.83, 1.18, 1.42, 1.73 and 1.92 m s−1 measured from just prior to
the sphere entering the thin film. Note that St <Stc for all impact velocities here (see
figure caption for values). Figure 3(a) for the separation distance versus time (from
1000 frames) shows that the motion is largely arrested by t =5 ms. As expected, the
penetration depth increases monotonically with sphere impact velocity. The data in
figure 3(c) is derived directly from figure 3(a) and is plotted from x = x0 = 2δ/3. The
data shows the decay of the velocity from v = v0 at x = x0 to v = 0 at x = xmin , i.e. the
point at which the experimental velocity of the sphere first reaches zero. Although
the sphere has not reached a true equilibrium level (evident from figure 3a), based on
the threshold used to derive the raw data in figure 3(a) and limited resolution, the
velocity has effectively reached zero by t = 5 ms for the data shown. This corresponds
to the lubrication force having become negligible and further motion is simply the
asymptotic settling of the sphere under the action of gravity (note that for perfectly
smooth surfaces, an effectively infinite time would be required for physical contact
to occur (Cox & Brenner 1967), however, in practice roughness of the materials,
typically O(10−6)m, may induce physical contact at finite times). We can make use of
this fact in order to deduce an effective minimum distance to compare to theoretical
predictions for the closet approach, discussed later. The solid lines in figure 3(c) are
derived from equation (8) of Davis et al. (1986), i.e.

v/v0 = 1 − ln(x/x0)/St, (3.1)

and generally provide a good qualitative description of the behaviour, but slightly
overestimate the penetration depth for the higher impact velocities.

From figure 3(e) we see that the force (calculated from (1.1) using the data
points from figure 3c) decays gradually for the lowest impact velocity, ui = 0.55 m s−1,
but increases to a maximum before sharply falling to zero for all other impact
velocities. This effect becomes more pronounced with the larger impact velocities
and is understood by the fact that the separation distance diminishes faster than the
impact velocity over the initial stages of penetration. Conversely, the sharp drop in
force as x → xmin is due to the rapid decay in velocity. Figure 3(e) also includes
theoretical predictions for the lubrication force, calculated from (1.1), shown by the
solid lines and exhibiting reasonable agreement.

In contrast, in figures 3(b), 3(d ) and 3(f ) we show an equivalent set of data for
a D = 38 mm sphere impacting a lower viscosity film of diluted (90 %) syrup with
µ = 1.6 Pa s. In this case, St >Stc (see figure caption for values) and rebound occurs
for all impact velocities (ui = 0.76, 1.02, 1.34, 1.58 m s−1) due to deformation of the
sphere. In this case a definitive minimum level is observed in the data as a local
minima in the separation distance – time curves, as shown in figure 3(b). Note for
ui = 1.58 m s−1, the sphere leaves the field of view at t = 6.8ms so no further data
points could be taken. For ui =0.76, 1.02 and 1.34 m s−1, the minimum separation
distances reached are within 14 ± 8 µm of the solid surface where the error margin is
based on 2 pixels needed to locate the interface. For ui = 1.58 m s−1, the experiments
show several data points with x < 0 implying a strong deformation of the sphere
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Figure 3. Plots of raw data for (a) separation distance versus time for D = 50 mm,
δ = 2.25 mm, pure syrup with µ= 29.6 Pa s (St = 0.8, 1.2, 1.6, 2.0, 2.3, 2.6; Stc = 4.2, 4.0, 3.9,
3.8, 3.7, 3.7); (b) separation distance versus time for D = 38 mm, δ = 2.25mm, 90% syrup with
µ= 1.6 Pa s (St = 15.5, 20.8, 27.3, 32.2; Stc =5.4, 5.3, 5.1, 5.1); (c) velocity versus separation
distance derived from (a); (d ) velocity versus separation distance derived from (b); (e) force
versus separation distance derived from (a); (f ) force versus separation distance derived from
(b). The solid lines in (c) and (e) represent the theoretical predictions from (3.1) and (1.1),
respectively.
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and possibly the substrate which is certainly supported by the strong rebound of the
sphere out of the film.

Theoretically, the minimum separation distance can be predicted by the elasticity
length scale xr (Davis et al. 2002) which, for the parameters for figure 3(b) yields
values of 5.8–7.8 µm, in reasonable agreement with the experimental values. Note,
however, that the definition of xr uses the approximation of v∗ = v0/2 for the velocity
of the sphere, whereas here we can make a much better approximation by measuring
the velocity just prior to rebound directly; Performing this measurement yields close
approach velocities, v∗ =0.4, 0.45, 0.72 and 1.16 m s−1 respectively and the modified
length scale, xmin = (6πθµa3/2v∗/

√
2)2/5 predicts minimum separation distances of

8.4–12.9 µm.
In figure 3(d ) we plot the velocity versus separation distance for this data including

negative values of v in the rebound stage (c.f. figures 2 and 5 of Lian et al. 1996).
These curves also show a much more rapid decay of the velocity as the sphere
approaches the wall yielding the sharp peaks in figure 3(f ) for the lubrication force,
where only the positive values of FL are shown as the theory becomes invalid during
rebound due to effects of cavitation.

3.1. Comparison to equations of motion

Since data for the low viscosity films indicate strong deformation, we focus mainly on
the realizations where St <Stc to compare to the lubrication approximation (1.1). This
comparison can be made by computing the velocity and force as a function of the
separation distance, as seen in figures 3(c) and 3(e), however, a more straightforward
comparison is made by simple numerical integration of the equations of motion
(assuming no solid deformation) given by

dx

dt
= −v, m

dv

dt
= −FL, (3.2)

where FL(t), given by (1.1) is the viscous lubrication force acting on the sphere,
m = (4/3)πa3ρs is the mass of the sphere, v = v(t) and x = x(t) are the instantaneous
velocity and separation distance. For the lubrication force to be valid, it is required
that x � a, ρlvx/µ � 1 and ρlx/(ρsa) � 1, where ρl is the liquid density. Typical
parameters from the experimental study are a = 0.025 m, x � 0.002 m, ρl = 1450 kg m−3

(pure syrup), v = O(1) m s−1, µ = O(10) Pa s, ρs = 7850 kg m−3 (steel) so that all the
above conditions are easily met. In accordance with Barnocky & Davis (1988), the
calculations are started at x0 = 2δ/3 where δ is the film thickness. The initial velocities
v0 are provided directly from the video sequences.

As no solid deformation is assumed in this approximate model, the sphere will be
arrested by the viscous force without rebound. This assumption is clearly valid for the
higher viscosity experiments in figure 3(a). Also, following Barnocky & Davis (1988),
we can approximate the dynamic capillary force acting on the sphere as Fc ∼ 4πaσ

which, for a D =50 mm sphere impacting pure syrup gives a value of Fc =0.025
N, which is orders of magnitude smaller than the lubrication force throughout the
impact phase so it can be neglected accordingly.

In figure 4(a–h), we present a direct comparison between the experimental data
and the motion predicted by (3.2). Data for both the glass and steel targets is shown
for pure syrup over a range of film thicknesses and sphere sizes (see captions for
details). The results are plotted as separation distance versus time where the data has
been scaled appropriately using the characteristic length x0 and velocity v0, starting
at time t0 (when the sphere passes through the level x0). Since the model assumes no
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deformation or rebound, the experimental data has only been plotted up to where the
experimental velocity first reaches zero. The solid black lines in each plot represents
motion for a constant velocity v0 (i.e. no deceleration). It can be seen that the data
is in good qualitative and quantitative agreement with the theory for most impact
velocities and film thicknesses; however, we note that the theory underestimates the
penetration for the lowest impact velocities (see e.g. figures 4d and 4h), which is due to
gravitational settling in the experiments, and marginally overestimates the penetration
for the higher impact velocities. To our knowledge, however, this data provides the
first direct verification of the lubrication force (1.1) for a sphere travelling through a
thin viscous film over a range of St and different substrates.

3.2. Minimum separation distance

To derive an experimental value for the minimum separation distance, xmin , we
determine x at which the experimental velocity of the sphere first reaches zero
(in practice, of course, the separation distance will gradually diminish due to the
settling under gravity, but this settling is asymptotically slow and not observed over
the duration of the video sequences here). As seen in figures 3(c) and 3(e), this
corresponds to the stage at which the lubrication force has diminished sufficiently so
that FL � mg and, as such, the lubrication force is no longer dominant in determining
the motion of the sphere. Using this threshold, we can then make a quantitative
comparison between the theory and experiment for the distance at which the viscous
force effectively arrests the motion of the sphere. In figure 5, we plot the normalized
distance of minimum separation, scaled with respect to the initial separation distance,
x0 = 2δ/3, versus the impact Stokes number, St = ρsDv0/9µ.

As predicted by Davis et al. (1986) for the approach of two spheres, the data shows
that the separation distance rapidly decreases as the Stokes number increases. An
approximately four-fold increase in the Stokes number leads to a similar reduction
in the scaled separation distance. Here, the theoretical values (dashed curves) are
determined from the equations of motion (3.2) by defining xmin as the value of x

at which FL � mg. Applying this threshold for a range of St generates the curves
shown. The rapid decrease of minimum approach with increasing Stokes number is
expected due to the small values of the elasticity parameter ε and the data shows
good agreement with the values predicted by the theory.

3.3. Non-Newtonian films

Experiments were also performed with certain non-Newtonian fluids with high
nominal viscosities (measured at low shear rates) but with highly shear-thinning
properties. Data for one such set of experiments is presented in figure 6(a) for silicone
oil with low-shear viscosity of ν = 100 000 cSt (µ0 = 97.7 Pa s). The data shown is for
a D = 50 mm sphere impacting a δ =3.45 mm film on a glass base. The data clearly
indicates that for the higher impact velocities, ui = 1.22, 1.41 and 1.69 m s−1, the sphere

Figure 4. Comparison of sphere motion for (a) D = 38 mm, δ = 2.25 mm, (b) D = 38 mm,
δ = 3.45 mm, (c) D = 50 mm, δ = 2.25 mm, (d ) D = 50 mm, δ = 3.45 mm, (e) D = 38 mm,
δ = 2.25 mm, (f ) D =38 mm, δ = 3.45 mm, (g) D = 50 mm, δ = 2.25 mm, (h) D = 50 mm,
δ = 3.45 mm. In all cases the film is pure syrup and the target surface is steel for (a)–(d )
and glass for (e)–(h). The dashed lines indicate the theoretical trajectories and the solid data
points are those derived directly from the video sequences. Note that the theoretical trajectories
and the experimental data begin at x0 = 2δ/3. The solid black lines indicate a slope of −1
which represents the trajectory with constant velocity v0.
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Figure 5. Minimum separation distances normalized by the initial separation, x0 = 2δ/3,
plotted against the impact Stokes; number, St = ρsDv0/9µ, for (a) glass base and (b) steel
base. The dashed lines indicate theoretical curves and data points are experimental values.
Stated values of D are in mm, x0 in mm and µ in Pa s.
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Figure 6. Raw data of (a) separation distance versus time and (b) velocity versus separation
distance for a D =50 mm sphere impacting a δ = 3.45 mm film of ν = 100 000 cSt (µ0 = 97.7
Pa s) silicone oil which is non-Newtonian.

penetrates sufficiently deep into the film to cause deformation and rebound. Based
on the nominal viscosity of this liquid, this is unexpected given that the values of the
Stokes number, St = 0.54, 0.62 and 0.75, are much lower than the critical values of
Stc = 3.79, 3.74 and 3.66. However, given that the film experiences shear, the reduction
in effective viscosity during the impact leads to effective Stokes numbers, Steff =4.06,
4.69 and 5.67 (based on µ = 13 Pa s, see later for details), whilst the critical values are
Stc = 4.61, 4.55 and 4.47 showing that at least the two highest impact velocities are
supercritical. More surprising is the fact that a slight apparent rebound is seen even
for the two lowest impact velocities, ui = 0.53 and 0.83 m s−1, where the sphere has
clearly not penetrated deep enough into the layer to cause solid deformation. Note
that these data points do meet the condition ε � 1 and noting that Stc > 1, these
cases do not fall into the category of rebound without deep penetration as outlined
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Figure 7. (a) Velocity versus Separation distance (v(t) � 0 only). Data is from figure 6(a)
for a D = 50 mm sphere impacting a δ = 3.45 mm film of ν = 100 000 cSt (µ0 = 97.7 Pa s)
silicone oil. The solid lines are the best fits from (3.1) using single apparent viscosities of
µ= 22 Pa s for ui = 0.53 and 0.81 m s−1 and µ= 13 Pa s for v0 = 1.21, 1.40 and 1.70 m s−1. (b)
Separation distance versus time for D = 50 mm, v0 = 1.70 m s−1, δ =3.45 mm and ν =100 000
cSt (µ0 = 97.7 Pa s) silicone oil. The experimental data is from figure 5(a) whilst the solid lines
represent the predicted motion using single Newtonian viscosities of 97.7 Pa s (the low-shear
viscosity) and 13 Pa s (the derived equivalent viscosity), respectively.

by Davis et al. (2002). Rather, we believe that this small apparent rebound may be
due to the effects of fluid compressibility or viscoelasticity.

By examining data for the instantaneous velocities for this data set, in figure 6(b),
we see similar qualitative trends as figure 3(d ) for the lower viscosity Newtonian film.
However, by examining only the data for v(t) � 0, as shown in figure 7(a), we can
provide a fit to the data using (3.1). Here, we have used regression to determine the
‘apparent’ viscosities which provide the best fit to the data – in this case, for the
low impact velocities, v0 = 0.53 and 0.81 m s−1, the viscosity which best fits the data
is µ = 22 Pa s whereas for the higher impact velocities, ui = 1.21, 1.40 and 1.70 m s−1,
we conclude µ = 13 Pa s. These apparent viscosities are far lower than the nominal
low-shear value of µ = 97.7 Pa s. To highlight the dramatic shear-thinning effect here,
figure 7(b) plots the original trajectory of the sphere for v0 = 1.70 m s−1 and the
predicted motions using both the low-shear viscosity stated by the manufacturer
and the projected viscosity derived from (3.1). The trajectory from the low-shear
viscosity of 97.7 Pa s shows strong deviation from the observed experimental trajectory
from early times (t ∼ 0.4 ms) and has reached its minimum separation distance,
xmin = 1.08 mm, at t ∼ 4 ms. In contrast, the trajectory for µ =13 Pa s penetrates to
a minimum separation of xmin = 8.3 µm in a time of t ∼ 3 ms. Although no single
viscosity can truly describe the motion for this fluid, the lower viscosity of µ = 13 Pa s
clearly predicts the motion over the initial stages much more accurately.

From the rheological data given in figure 2, we can derive some effective viscosities
based on the shear rate in the thin layer, approximated by γ̇exp ∼ u(t)/�x(t). Near to
the entry of the sphere and close to the surface of the glass plate, this corresponds to
effective shear rates of γ̇ ∼ 8300 and 9700 respectively, which translates to viscosities
of 12.3 and 11.2 Pa s, which is very close to the value obtained from the fit provided
by (3.1) in figure 7(a) of 13 Pa s.

The crude approach used to derive a Newtonian equivalent viscosity, however,
does not take into account the true shearing effect in the fluid as the sphere travels
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throughout the film. A better, quantitative examination of the flow-field in this
geometry is sure to provide a more accurate description of the shear and extension
which could then be used in calculation of effective viscosities at each time step. This
is beyond the scope of the present work, but will be assessed in the future. As a first
approximation, however, we propose that the fitting method used in figure 7 may be
useful in determining the short-time dynamical behaviour of non-Newtonian fluids.
In addition, the observations in figures 6 and 7 highlight the importance of using
well-behaved liquids in lubrication experiments.

4. Conclusions
An experimental approach employing high-speed video imaging has been used

to verify the lubrication force exerted on a sphere when penetrating through a
thin viscous film covering a solid wall. The results for high-viscosity Newtonian
fluids show excellent agreement with the theoretical trajectories computed from the
equations of motion based on the lubrication force, FL = 6πµa2v/x. The distance of
closest approach determined experimentally when the velocity first reaches zero was
shown to be in good agreement with theoretical predictions based on the threshold
FL � mg when plotted against the impact Stokes number. Experiments performed
with shear-thinning fluids show interesting behaviour where compressibility may be
important and we propose that this simple experimental configuration can be used
to provide insight into the short-time dynamical behaviour of non-Newtonian fluids
which is otherwise difficult to determine.
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